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Abstract 

One of the data fusion issues for observations from multiple space-borne microwave 

sensors is the non-uniform spatial resolution. Although the Backus-Gilbert Inversion 

(BGI) algorithm has long been used for the Advanced Technology Microwave Sounder 

(ATMS) antenna pattern matching, previous studies showed that it has difficulty in 

accurate remapping from the coarser to the finer observations. Since BGI tends to 

enhance the data’s high spatial frequency components including both information and 

noise, it is a challenge to increase the spatial resolution while maintaining an acceptable 

noise level. This study unveils that the main cause of this issue is the insufficiency of 

the information provided by the conventional fixed reconstruction window. An 

adaptive window method is applied to provide sufficient information for the 

reconstruction at each scan position. In addition, a new noise tuning method is proposed 

to eliminate the scan-angle-dependent features in the noise caused by the sensor’s cross-

track scanning manner. Results from simulations and NOAA ATMS data show that 

compared to the fixed window, the new method can significantly reduce the bias 

stemming from the resolution difference. The issue of the deterioration of the resolution 

enhancement capability near the scan edge in the fixed window method has been largely 

ameliorated. The overall Root-Mean-Square error is declined by 30%. The new noise 

tuning method is capable of suppressing the noise level at around 0.6 K over scan.  

Keywords: ATMS, Backus–Gilbert Inversion, Data fusion, Remapping, Spatial 

resolution enhancement  



I. INTRODUCTION 

Satellite passive microwave observations have significant value in atmospheric remote 

sensing, numerical weather predictions (NWP) as well as climate modeling. However, 

due to the limited size of the antenna reflector and the different observation frequencies, 

the measurements from different channels and sensors often have nonuniform spatial 

resolution. This has become a critical issue, since for many applications a consistent 

spatial resolution for measurements from multiple data sources is expected. The 

techniques using combined data sets are not strictly valid unless steps are taken to match 

data with different spatial resolution [1]. 

There are two different approaches to unify the spatial resolution of observations from 

different data sources. One is the conversion of the swath-based measurements to a 

regular Earth-centered grid, equivalent to antenna pattern deconvolution [2]-[5]. The 

other is the matching of antenna pattern, which makes estimation of the antenna 

temperature (Ta) the sensors would have measured with the prescribed target antenna 

pattern [1][6][7]. In both methods, if the generated measurements have finer (coarser) 

spatial resolution than the raw data, this process is also known as spatial resolution 

enhancement (degradation). In this study, we will focus on the algorithms based on 

antenna pattern matching.  

The Backus-Gilbert Inversion (BGI) algorithm and the Fourier filtering [8] are currently 

available analytical algorithms for microwave data remapping. The early research 

works on the BGI laid out a rigorous mathematical basis for the inversion of the seismic 



observations to produce detailed profiles of the earth’s density structure [9]-[11]. Later, 

Stogryn [2] applied it to the specific problem of microwave footprint manipulation. 

This work formed the basis of the development of some computationally efficient 

versions [12]-[14]. The BGI algorithm has been widely applied to multi-frequency 

microwave radiometers for spatial resolution matching, such as the Special Sensor 

Microwave/Imager, the Microwave Radiation Imager (MWRI), and the Advanced 

Technology Microwave Sounder (ATMS) [1][6][15]. It has been implemented in the 

ATMS operational resampling algorithm to produce ATMS measurements at each 

Cross-track Infrared Sounder (CrIS) Field of View (FOV) [16]. The Fourier filtering 

algorithm, manipulating the antenna pattern in frequency domain, also has applications 

in ATMS and MWRI data remapping [17]-[18]. The comparison of the BGI and the 

Fourier filtering algorithms [7] showed that the former has higher remapping accuracy 

than the latter one in both resolution enhancement and degradation. In recent years, 

various Convolutional Neural Networks have been designed for spatial resolution 

enhancement for microwave sensors, such as the MWRI onboard Fengyun-3 series of 

satellites [19] - [23]. 

In our previous study [6]-[7], the BGI algorithm has been applied to remap from ATMS 

channel 1 (23 GHz) with 5.2° beam width and channel 3 (50 GHz) with 2.2° beam 

width to a proxy AMSU-A 3.3° FOV size. It shows that while the results for resolution 

degradation are encouraging, the resolution enhancement the algorithm can achieve is 

quite limited. The enhancement procedure narrows the beam width only by 15%. The 

comparison between the reconstructed image and the simulated truth shows large bias 



around coastlines and hurricane centers. Other researchers also found the same issue 

when the BGI was used to match the spatial resolution of the SSM/I 19 GHz and 22 

GHz channels to its 37 GHz channel [1]. Since the resolution enhancement is usually 

achieved at the cost of the amplification in noise, it is a challenge to further increase 

the spatial resolution for these lower frequency channels while maintaining their noise 

at an acceptable level.  

In this study, the ATMS spatial resolution enhancement accuracy is improved by using 

the adaptive window and a new noise-tuning method. In BGI, the reconstruction 

window is a key parameter to determine which source observations are to be used to 

produce the target ones. In the past, a fixed square-shaped window was commonly 

adopted for all scan positions [1][6][7]. Our most recent work [24] found that for spatial 

resolution enhancement, utilizing more observations with overlapping FOVs might be 

the key to increase the remapping accuracy. In this paper, the adaptive window is 

applied in BGI to provide sufficient information for the spatial resolution enhancement. 

The noise-tuning parameter is another key parameter in BGI. It controls the tradeoff 

between the spatial resolution and the noise. Our study found that a fixed value of this 

parameter for all the scan positions, as used in previous studies [1][3][5][28], led to a 

FOV-dependent feature in noise. To address this issue, a new noise-tuning method is 

proposed to ensure a stable and acceptable noise level in the reconstructed dataset. The 

new algorithm will be used to determine the optimum remapping coefficients, which 

converts ATMS observations from 5.2° FOV to a consistent AMSU-A 3.3° FOV. 



The remainder of this paper is organized into four sections. Section II describes the 

adaptive reconstruction window and the new noise-tuning method. Section III employs 

simulations to determine the optimum parameters and quantitatively evaluate the 

synthetic point spread function (PSF) and the remapping results. The new method is 

applied to real ATMS observations in Section IV. Summary and conclusions are 

provided in Section V.   

II. IMPROVEMENTS TO BGI REMAPPING ALGORITHM 

This study focuses on improving the ATMS resolution enhancement accuracy by 

optimizing the reconstruction window and the noise tuning parameter in BGI algorithm. 

Before diving into the new method in the next two subsections, the BGI algorithm will 

be briefly introduced. 

Ignoring the scan-motion smearing caused by the continuous scan mode of the ATMS, 

the antenna temperature (Ta) at a location (𝜌𝜌0) can be expressed as the convolution of 

the scene brightness temperature (Tb) with the antenna gain function (G) projected onto 

Earth surface, i.e. point spread function (PSF) [8]: 

                   𝑇𝑇𝑇𝑇(𝜌𝜌0) = ∫𝑇𝑇𝑇𝑇(𝜌𝜌) ∙ 𝐺𝐺(𝜌𝜌0, 𝜌𝜌)𝑑𝑑𝑑𝑑                     (1)                                             

G is normalized so that ∫ 𝐺𝐺 𝑑𝑑Ω4𝜋𝜋 = 1. Following previous research, the antenna gain 

function in (1) is modeled by a two-dimensional Gaussian function with 3-dB (half-

power) point that matches the footprint size [5][25]. The BGI algorithm aims at finding 

a set of coefficient values (ai) that provide a linear combination of the source 



measurements (𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) at each of their locations (𝜌𝜌i) to estimate a target observation 

with the target antenna pattern (𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡): 

                    𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡(𝜌𝜌0) = ∑ 𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜌𝜌𝑖𝑖)𝑛𝑛
𝑖𝑖=1                  (2)                                 

Assuming an independent and constant noise variance 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2  for all observations, 

noise in the target observations can be expressed as:           

                      𝜎𝜎𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡2 = 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 ∑ 𝑇𝑇𝑖𝑖2𝑛𝑛
𝑖𝑖=1                         (3)                                                  

To reach a tradeoff between the resolution enhancement and the noise suppression, the 

optimal coefficients (𝑇𝑇𝑖𝑖) are derived by minimizing the following objective function Q: 

                       𝑄𝑄 = 𝑄𝑄0 cos 𝛾𝛾 + 𝜎𝜎𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡2 𝑤𝑤 sin 𝛾𝛾                  (4a)                                                

                   𝑄𝑄0 = ∫ �∑ 𝑇𝑇𝑖𝑖𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜌𝜌𝑖𝑖,𝜌𝜌)𝑛𝑛
𝑖𝑖=1 − 𝐺𝐺𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡(𝜌𝜌0,𝜌𝜌)�

2
𝑑𝑑𝑑𝑑    (4b)  

𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝐺𝐺𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡 are the source and target antenna gain functions. 𝑄𝑄0 is the fit 

error, measuring the mismatch between the reconstructed antenna gain and the target 

one. 𝜎𝜎𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡2  denotes the noise in the reconstructed antenna temperature. Both terms 

contribute to the remapping errors. The parameter w is set to 0.001 to make the two 

terms numerically compatible. The parameter 𝛾𝛾 is a tradeoff factor that places degrees 

of emphasis on either the antenna pattern match or the noise suppression in the 

estimates of 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡. Larger value of 𝛾𝛾 puts more penalty on noise and thus produce 

lower noise but higher mismatch in antenna pattern. While smaller value of 𝛾𝛾 puts 

more penalty on fit error and thus produce better match in antenna pattern but higher 

noise. With an appropriately selected 𝛾𝛾, minimizing the objective function gives a 



series of coefficients that can produce the dataset with desired antenna pattern match 

and acceptable noise level. The way to determine this parameter will be elaborated in 

section II-B. To reduce the impact of the geometric deformation of the FOVs over the 

scan caused by the cross-scanning manner of the sensors, the optimum coefficients are 

derived for each FOV position. Given the radiometer configuration, the coefficients 

need to be determined only once, and the inversion procedure reduces to a weighted 

sum of the measurements (2) [6][7][16]. The detailed description of the algorithm and 

the solution of the coefficients can be found in [1][26][27].  

A. Adaptive Reconstruction Window 

In the BGI algorithm, the target antenna temperature is generated as a weighted linear 

sum of measurements within a certain reconstruction window. For the intrinsic antenna 

pattern matching, this window is usually set to be a fixed one for all the scan positions. 

In the experiments of [2], the window is selected to be 3, 5, and 7 along one scan line.  

Robinson et al. [1] used a fixed square window, 3×3, 5×5, and 7×7 to enhance and 

match the resolution of the measurements of SSM/I. Bennartz [29] used a 7×7 set for 

the optimal convolution of AMSU-B to AMSU-A. For the footprint matching from 

ATMS channel 1 with 5.2° beam width to AMSU-A like 3.3° beam width, the 

reconstruction window is fixed to 3×3 [6]-[7]. This fixed 3×3 is also adopted in the 

ATMS operational resampling algorithm to remap ATMS observations at CrIS FOVs 

[16].  



Some researchers used a more flexible window that varies along scan line. This kind of 

reconstruction window determines only the source samples adjacent to the target FOV 

are included in the remapping. The degree of adjacency is measured in terms of the 

distance [30], the elevation angle [28] or the volume of the overlap [31] between the 

source FOV and the target FOV. To avoid the numerical problems in the matrix-

inversion step of BGI, Long and Daum [3] adopted the observations in the 

reconstruction only if their relative antenna gain at the pixel of interest is greater than a 

specific threshold. Different thresholds have been selected for specific sensors and for 

specific resolution enhancement purposes. For example, the gain threshold is set to -11 

dB for SSM/I and later adjusted to -8 dB for more sensors in the NASA-sponsored 

Calibrated Passive Microwave Daily Equal-Area Scalable Earth Grid 2.0 Brightness 

Temperature (CETB) Earth System Data Record [3]-[5]. So far, this kind of 

reconstruction window was mostly used in antenna pattern deconvolution. In our 

preliminary experiment, this adaptive window was applied to ATMS remapping from 

beam width 5.2° to 1.1° and the result showed that the noise level can be significantly 

reduced [24]. This initial study shed light on the advantage of the adaptive window, but 

left some key questions that need to be further addressed, such as how to objectively 

determine the optimum window and other parameters in BGI. 

In this study, the adaptive window defined in Long and Daum [3] will be applied to the 

ATMS intrinsic antenna pattern remapping from beam width 5.2° to 3.3° which is 

required in the ATMS operational resampling process [8, 16]. The objective methods 

to determine the optimum adaptive window and other key parameters will be 



thoroughly discussed and presented. To apply the adaptive window method, both the 

source and target antenna patterns need to be projected onto earth surface. In previous 

studies regarding ATMS remapping, the projection is made with 2.5 times the sensor’s 

-3 dB beam width [6][7][16], since the antenna pattern within such solid angle includes 

the main beam and contains major part of the total beam energy [32]. In this study, in 

order to compare the source, synthetic and target PSFs over the same area later in 

Section III. C, the target and the source antenna patterns are projected with the same 

zenith angle range. Specifically, the source antenna pattern is projected with 2.5 times 

its beam width (5.2°) while that factor for the target antenna pattern with 3.3° beam 

width is 2.5×5.2°
3.3°

= 3.9. Our research found that projecting the antenna pattern with 

larger zenith angle won’t result in much difference in the remapping results. Based on 

the projected antenna patterns, the overlap between each source antenna pattern and the 

target one is determined. The observations whose maximum antenna gain within the 

pixel of interest exceeds a certain threshold value are adopted in the reconstruction. 

This threshold is expressed in terms of decibel below the peak gain of the antenna 

pattern. Fig. 1 illustrates an adaptive window with the gain threshold of -5 dB versus 

the fixed 3 × 3 window. The red and black crosses respectively represent the source 

ATMS channel-1 5.2° FOV centers within the 3 × 3  window and the adaptive 

window. The pixel of interest, i.e. the outline of the projection of the target antenna 

pattern with 3.9 times its -3 dB beam width is represented by the blue circles and its 

center coincides at the center of the 3 × 3 window. To keep the integrity of the 3 × 3 

window, the first and the last FOVs of ATMS scan lines are excluded from the 



following discussion. Unlike the 3 × 3  window fixed for all ATMS FOVs, the 

adaptive window varies along the scan positions and maximizes the use of available 

source observations. Considering the fact that the optimum threshold of the adaptive 

window is determined by the source and target gain patterns and sampling geometry, 

its value should vary among different channels and sensors. In Section III, the optimum 

threshold for ATMS remapping window will be objectively selected through 

simulations. 

B. A New Noise-tuning Method 

According to the objective function (4), the noise-tuning parameter 𝛾𝛾  controls the 

tradeoff between the resolution and the noise. In previous studies, a fixed 𝛾𝛾 is selected 

to maximize the correlation between the resolution enhanced results and the target 

references, which can be either the simulated truth or the real observations with finer 

spatial resolution but higher observation frequencies [1][3][5][28]. However, this 

strategy could cause a problem in the antenna pattern remapping for a cross-track 

scanning sensor like ATMS.  

Equation (4) indicates that the noise and fit error are the two factors that contribute to 

the remapping error. As will be showed in Section III-D, with the adaptive window, the 

noise, rather than the fit error, plays a major role in the remapping uncertainty. Due to 

the ATMS’s cross-track scanning manner, the FOV size at nadir is much smaller than 

that at scan edge. This enables the reconstruction at nadir to achieve higher spatial 

resolution than at edge. As BGI tends to enhance the high frequency components in 



signal including both information and noise, the noise at nadir will be increased higher 

than that at edge if the fixed 𝛾𝛾, i.e. the same amount of penalty, is placed on the noise 

term in (4) for all the scan positons. Since in NWP, a stable noise estimate (NEDT) of 

the sensors is required to establish the measurement error covariance matrix [33], the 

FOV-dependent feature of noise may hinder the applications of the remapping data in 

this field. 

To address this issue, in this study, the noise-tuning parameter 𝛾𝛾 is selected based on 

tradeoff curves to ensure a stable noise level in the entire reconstructed image. The 

tradeoff curves are expressed as the noise amplification ratio 𝜎𝜎𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁄  vs 

normalized fit error 𝑄𝑄1: 

                    𝑄𝑄1 = 𝑄𝑄0 ∫𝐺𝐺𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡(𝜌𝜌)2 𝑑𝑑𝑑𝑑⁄                         (5) 

Specifically, given a certain value of 𝛾𝛾, minimizing the objective function (4a) yields 

coefficients that can be used to calculate 𝑄𝑄1 from (4b)-(5) and 𝜎𝜎𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁄  from 

(3). By varying 𝛾𝛾  from 0° to 90° , a series of samples of (𝑄𝑄1 , 𝜎𝜎𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁄ ) 

corresponding to various 𝛾𝛾 can be obtained. The tradeoff curve is then plotted from 

these samples with 𝑄𝑄1 as its x-axis and 𝜎𝜎𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁄  as its y-axis. This curve is 

plotted for each scan position. The optimum value of 𝛾𝛾 is selected at the point of the 

curve where the noise amplification ratio reach the same prescribed value for all the 

FOVs. The noise amplification ratio consistent along the scan line ensures a stable noise 

level in the reconstructed data set. 



III. SIMULATION RESULTS 

To objectively specify the optimum parameters and validate the performance of the new 

algorithm, it is helpful to use simulation. In this study, Ta observed with the source and 

target antenna pattern are simulated following the procedure described in [7]. In brevity, 

the PSF at each FOV is generated by projecting the antenna pattern onto the earth’s 

surface based on ATMS instrument scan geometry. Brightness temperature within the 

PSF are simulated by the Community Radiative Transfer Model (CRTM) for the 

atmosphere and surface geophysical parameters provided by the Global Forecast 

System (GFS) with a 0.12° grid resolution. Antenna temperature is generated from the 

convolution of Tb with the PSF. For the source observations of channel 1, Gaussian 

white noise with the standard deviation equal to the NEDT of channel 1, 0.22 K, is 

added. The reconstruction algorithm is then applied to the simulated source 

measurements to generate the remapped results. The remapped and target data are 

compared to make a quantitative evaluation of the remapping algorithm. 

In this section, the case of Hurricane Dorian at 18:00 UTC 31 August 2019 is adopted 

for the evaluation. The simulation of the NOAA-20 ATMS observations with the source 

and target antenna patterns are presented in Fig. 2 (a-b). Fig. 2 (c-d) shows the remapped 

results using the fixed 3×3 window and the adaptive window with optimum parameters. 

The process to select these optimum parameters will be elaborated in Section III-A and 

III-B. Fig. 2 (e-f) illustrates the difference between the remapped and the target data. It 

clearly shows that, compared to the fixed window, the adaptive window method can 



gain much higher spatial resolution at coastlines and hurricane centers, and significantly 

reduce the bias stemming from the resolution difference. The quantitative evaluation of 

the effectiveness of the new algorithm will be detailed in the Section III-C and III-D. 

A. Selection of the Optimum Noise-tuning Parameter 

As described in Section II-B, the optimum value of the noise-tuning parameter 𝛾𝛾 is 

specified through the tradeoff curve at each scan position. Note that this method is 

applicable to any window types. In this section, the adaptive window with -5 dB 

threshold is adopted as an example to illustrate the procedure of this new method. 

Examples are shown in Fig. 3 to illustrate the behavior of the tradeoff curves at the scan 

edge and nadir. The curves at other scan positions share the similar features. In each 

case, two curves are shown, one for the 3 × 3  window and one for the adaptive 

window. The gross behavior of the tradeoff curves is the same. The noise amplification 

ratio 𝜎𝜎𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁄  decreases monotonically with increasing 𝑄𝑄1. The decrease is 

rapid at small values of 𝑄𝑄1, followed by a leveling off with its increasing value. The 

left end point of the curve with the maximum noise amplification and minimum fit error 

corresponds to a choice of 𝛾𝛾=0° in (4a), while the opposite end of the curve which has 

the minimum noise and maximum fit error corresponds to a choice of 𝛾𝛾=90°. To obtain 

a good remapping accuracy, the steep portion of the tradeoff curves is of greater 

practical interest. Fig. 3 shows that the steep portion of the curve shifts in the direction 

of decreasing 𝑄𝑄1 as the window switch from the fixed 3 × 3 to the adaptive one. 

Therefore, for a given value of remapping accuracy 𝑄𝑄1, the image reconstructed by 



adaptive window has much lower noise than that produced by the fixed 3 × 3 window, 

while for a given value of the noise 𝜎𝜎𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁄ , the adaptive window can achieve 

higher spatial resolution than the 3 × 3 window. Compared to the tradeoff curves at 

scan edge (Fig. 3 (a)), the curves at nadir (Fig. 3 (b)) have relatively higher dynamic 

range. This is because ATMS channel 1 FOV size is much smaller at nadir than at edge 

which allows the reconstruction at nadir to reach higher degree of spatial resolution 

enhancement as well as higher increase in noise.  

As illustrated by the tradeoff curves, to have a low fit error, the noise amplification ratio 

needs to be set as high as possible within an acceptable level. In this paper, the NEDT 

specification for NOAA-20 ATMS channel 1, 0.7 K, is regarded as an upper limit for 

the remapping uncertainties [16]. To ensure a stable and acceptable noise level, 𝛾𝛾 is 

selected at the tradeoff curve for each FOV where the noise amplification ratio equals 

to 2.5 (i.e. the crosses on the curves in Fig. 3). As will be shown in Section III. D, this 

setting restricts the uncertainties of remapping results under the sensor’s NEDT 

specification limit.  

Fig. 4 presents the noise level (left panel) and the derived coefficients (right panel) 

when 𝛾𝛾 is fixed to 0.116° (lower panel) and determined by the tradeoff curves (upper 

panel). Fig. 4 (a) shows that the strategy proposed in this study leads to a FOV-

dependent 𝛾𝛾 which ensures a constant noise level across the scan line. Fig. 4 (c) shows 

that a fixed 𝛾𝛾 leads to an evident increase in noise from scan edge to nadir. This can 

be explained by (3) and the derived coefficients presented in Fig. 4 (b) and (d). 



According to (3), given a specific sensor with a certain NEDT, the noise level in the 

reconstructed data solely depends on the variance of the BGI coefficients. As showed 

in Fig. 4 (d), when 𝛾𝛾 is fixed for all the FOV positions, the variance of the coefficients 

for the FOV at nadir is larger than that at scan edge. This leads to the variation of the 

noise along scan. When 𝛾𝛾  is determined by the new strategy, the variance of the 

coefficients for the FOV at nadir is similar to that at edge (Fig. 4 (b)). This results in 

the same noise level along scan.  

For a more intuitive comparison, the coefficients derived by the FOV-dependent 𝛾𝛾 and 

the fixed 𝛾𝛾 in Fig. 4 are applied to the simulated data set. The difference between the 

reconstructed result and the simulated truth are presented in Fig. 5. In addition, the bias 

and Standard Deviation (STD) of the error at each FOV position are calculated and 

presented in Fig. 6. Fig. 5 and Fig. 6 show that the remapping result with the fixed γ 

has much higher noise around nadir than scan edge, and this feature is not evident in 

the image reconstructed with the FOV-dependent γ. The overall error statistics are listed 

in Table I. The numbers show that the remapping result from the adaptive window with 

fixed γ and FOV-dependent γ have similar bias but the former window produces higher 

STD and RMS error than the later one. The features of the noise distribution are 

consistent with what is showed in Fig. 4. 

The simulation results are consistent with what we expect in Section II-B. By fixing the 

noise amplification ratio over scan, 𝛾𝛾 is automatically adjusted to lay more penalty on 



the noise term at nadir and less penalty at edge. This counteracts the FOV-dependent 

feature of the noise caused by the sensor’s cross-scanning manner.   

B. Selection of the Optimum Adaptive Window 

As described in Section II-A, the adaptive window with a specific gain threshold is used 

in this study to provide BGI algorithm with more sub-footprint information. This 

strategy allows the source observations to be engaged in the reconstruction only if their 

antenna gain at the target FOV exceeds a certain threshold. In this section, the optimum 

threshold of the adaptive window is determined through simulations.  

Fig. 7 presents the window size at nadir and the Root-Mean-Square error (RMS) 

calculated from the difference between the “truth” and the remapped results with 

various window types. This is performed for the fixed 3 × 3 window and the adaptive 

windows with the threshold varying from 0 dB to -13 dB below the peak gain. It shows 

that, with the adaptive window, many more measurements are employed in BGI 

algorithm than the fixed 3 × 3 window. The window size increases quickly with the 

decrease of the threshold. The RMS drops sharply when switching form the fix 3 × 3 

window to the adaptive window with 0 dB threshold. As the threshold continues to 

decrease, the RMS first slightly fluctuates and then stays steady at around 0.65 K where 

the threshold is below -5 dB.  

The deviation from the remapping results to the simulated truth for the first five 

adaptive windows are presented in Fig. 8. It can be seen that enlarging the adaptive 

window from 0 dB to -3 dB effectively reduces the error around the coastline area. The 



window with -5 dB threshold has slightly better performance along the north coastline 

of Cuba than the -3 dB window. Further decreasing the threshold below -5 dB makes 

not much improvement in the results. 

Comparing to the 3 × 3 window, the large size and irregular shape of the adaptive 

window leads to extra process time. For the Hurricane Dorian case showed in Fig. 2, 

the process time of the 3×3 window and the adaptive window with -5 dB threshold on 

the Red Hat Linux 6.0 server with a single Inter Xeon CPU (2.5 GHz frequency and 

128 G memory) is 0.6 s and 6 s respectively. Considering using the multi-core parallel 

computing in the future, the extra computational time caused by the complexity of the 

adaptive window will not be an issue for its operational application. 

This experiment demonstrates that the adaptive window with -5 dB threshold is large 

enough to provide sufficient information for remapping and the computational time is 

acceptable for the operational practice. Therefore, the adaptive window with this 

threshold is regarded as the optimum choice. 

C. Reconstruction of the Point Spread Function (PSF) 

The PSF describes the spatial characteristics of the antenna gain projected on the earth 

surface. Analysis of the PSF is helpful to validate the remapping accuracy. According 

to the objective function (4b), the reconstructed PSF can be straightly expressed as the 

sum of the source PSF weighted by its corresponding coefficient. With the BGI 

coefficients generated with the optimum parameters, the source, synthetic, and the 

target PSFs along with their Fourier transform spectrum are calculated and presented 



in Fig. 9. The comparison of the results in the spatial domain (upper panel of Fig. 9) 

shows that the PSF reconstructed with the adaptive window has a more prominent 

center and a narrower beam width than the one produced by the conventional 3×3 

window. In the frequency domain (lower panel of Fig. 9), it is clearly showed that the 

PSF built from 3×3 window is only able to recover very limited low frequency 

components, while the PSF built from adaptive window provides much richer 

information at high frequencies. Although compared to the target PSF, the one 

generated by adaptive window has slightly higher amplitude at low frequency and lower 

amplitude at high frequency, the improvement relative to the fixed 3×3 window is 

evident.  

To quantitatively evaluate the remapping accuracy, the beam widths of the response 

functions before and after correction are estimated based on the PSFs in spatial domain. 

To do so, the half-power points of the PSFs are extracted and fitted by a circular curve, 

as is showed in Fig. 10. From the FOV size, i.e. the diameter of the circle and the 

altitude of the satellite (824 km for NOAA-20), the beam widths can be obtained. 

Results show that the BGI algorithm with 3×3 window is capable of narrowing the 

beam width from 5.3° to 4.5°. By using the adaptive window, the beam width can be 

further reduced to 4.0°. The improvement is increased from 15% to 25%.  

D. Quantitative Validation of the New Algorithm 

The simulation of the Hurricane Dorian case is used in this section to quantitatively 

evaluate the effectiveness of the new method. As is showed in Fig. 2, compared to the 



image generated by the 3×3 window (Fig. 2 (c)), the one produced by the adaptive 

window (Fig. 2 (d)) exhibits much clearer coastlines and more details around the 

hurricane center. These features are closer to the simulated truth (Fig. 2 (b)). The 

deviation from the remapped image to the truth are presented in (Fig. 2 (e-f)). The error 

image of the 3×3 window shows obvious positive bias over water and negative bias 

over land around the islands, whereas on the error image of the adaptive window, such 

error pattern has been almost eliminated. This indicates that the issue of the insufficient 

resolution enhancement has been largely solved by using the adaptive window method. 

However, the comparison of Fig. 2 (e) and (f) also shows that the image produced from 

adaptive window has relatively larger negative error at the rightmost column than the 

3×3 window. The explanation to this issue and the possible solution will be laid out in 

the next section. 

Error statistics (mean, Standard Deviation (STD), and Root Mean Square (RMS)), 

computed from the difference between the “truth” and the observations before and after 

the remapping process, are given in Table I. The numbers suggest that the BGI with 

3×3 window is capable of reducing the STD but leave the bias almost unchanged. In 

comparison, the adaptive window method manages to effectively eliminated the bias to 

zero and further reduces the STD from 1.49 K to 0.65 K, which is under the NOAA-20 

ATMS channel 1’s NEDT specification [16]. The fact that the image reconstructed with 

adaptive window has its STD and RMS (0.65 K) close to the amplified noise 𝜎𝜎𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡 

(0.55 K) calculated by (3), suggests that the noise, rather than the fit error, makes the 

major contribution to the remapping error. This indicates that the strategy to determine 



the noise tuning parameter proposed in this study is a necessity to guarantee a consistent 

noise level for the overall reconstructed image. With the fixed 3×3 window, the overall 

RMS decreases by 40% compared to the raw data while with the adaptive window, this 

number decreases as much as 70%. This experiment demonstrates that using adaptive 

window in BGI algorithm can effectively increase the amount of information and 

significantly improve the spatial resolution while maintaining the noise level at an 

acceptable level. 

E. The Underperformance of the Adaptive Window Method at Scan Edge over 

Uniform Antenna Temperature Area 

As mentioned in the previous section, comparing to 3×3 window, the adaptive window 

has relatively larger negative bias at the right edge of the scan line. This issue can be 

explained by the insufficiency of the data in adaptive window at scan edge and the 

slowly varying Ta at the right part of the simulated area. 

Firstly, the performance of the adaptive window at scan edge is not as good as that at 

nadir. Comparing the tradeoff curves of the adaptive window at nadir and at scan edge 

(solid lines in Fig. 3), with the same noise amplification ratio 2.5, the adaptive window 

has slightly higher value of Q1 at scan edge than at nadir, indicating a larger fit error at 

scan edge. This is due to the ATMS’s cross-track scanning manner which makes it 

impossible to have adequate observations fully cover the pixel of interest at scan edge. 

As showed in Fig. 1, the source observations only cover about half of the pixel of 

interest at the outmost scan positions.  



Secondly, the signal’s slowly varying pattern benefits the small window. As it is known, 

when dealing with uniform Ta field, antenna pattern has no impact on the output, i.e. 

the Ta observed by source and target antenna pattern would be the same and equal to 

the Tb of this area. This is exactly what BGI does when its window covers uniform 

observations. According to (2), since the uniform Ta can be moved out of the sum and 

the sum of the coefficients is unity, the reconstructed Ta exactly equals to the source 

one. In this scenario, the synthetic antenna pattern, no matter how inaccurate it is, will 

have no impact on the result. BGI degenerates into the direct assignment of the source 

Ta. Therefore, for the signal slowly varying area, the small window containing uniform 

observations tends to make better prediction. 

Zooming into the rightmost FOV of the 18th scan line, Fig. 11 shows the source 

observations involved in the adaptive window and the 3×3 window. It can be seen that 

the 3×3 window covers small area and the source Ta within it appears uniform. Thus, 

the remapping result tends to be the average of Ta within the window. Conversely, the 

adaptive window covers much larer area and the observations within it has much lower 

value at the left part than at the target FOV. Since the beam width of the synthetic 

antenna pattern is larger than the target one, the Ta at the left part of the window ‘seen’ 

by the sythetic antenna, but not by the target one, will have negative impact on the 

remapping result. The calculation shows that the target Ta is 251.2 K. While the 

prediction error of the 3×3 window is 0.05 K, the synthetic Ta from the adaptive 

window is 2 K below the truth. 



One thing we want to point out is that the underperformance of adaptive window at the 

rightmost FOV doesn’t mean that its synthetic antenna pattern is worse than that created 

by the 3×3 window. On the contrary, the tradeoff curves in Fig. 3 and the outperformace 

of adaptive window at the left part of the simulation where signal changes sharply (Fig. 

2) demonstrates that the synthetic antenna pattern created by adaptive window is much 

more accurate than that by 3×3 window. The underperformance of the adaptive window 

observed at the rightmost columns is the combined effect of the insufficiency of the 

data in adaptive window at scan edge and the slowly varying antenna temperature at 

that area. 

It is also noticeable in Fig. 2 (f) that at the signal slowly varying area other than the 

rightmost part, the performance of adaptive window is similar to that of the 3×3 window. 

This suggests that with more observations fully covering the pixel of interest at scan 

edge, the adaptive window can reach higher fit accuracy and the issues for uniform Ta 

field observed at scan edge can be addressed. A possible solution is to combine the data 

from the adjacent orbits into the reconstruction of the PSF at scan edge, as the CETB 

system did to converse the swath-based satellite data to the regular grid with high spatial 

resolution [3]-[5] . However, the difference in these observations caused by more than 

100 minutes time interval between NOAA-20 adjacent orbits can be significant. This 

difference will impact the accuracy of the reconstruction and needs to be taken into 

consideration. Since the area with sharply changing signal, such as hurricane centers, 

is of greater interest to scientific community and the ATMS operational resampling 

requires real-time process, combining the observations from multiple orbits to improve 



the remapping accuracy at scan edge for uniform Ta field will not be carried out in this 

study. 

 

IV. REAL ATMS DATA RESULTS 

Having selected the optimum noise-tuning parameter, 𝛾𝛾 , and adaptive window 

threshold based on simulation, in this section, we validate the performance of the new 

algorithm with the real ATMS data. Fig. 12 shows the raw observations and remapping 

results of NOAA-20 ATMS channel 1 for Hurricane Dorian over North Atlantic Ocean 

at 18:00 UTC 31 August 2019 captured by the ascending orbit. The remapping results 

(Fig. 12 (b-c)) demonstrate that compared with the 3×3 window result, the image 

generated with the adaptive window uncovers more detailed structures not only around 

the hurricane center and coastlines where the signal change sharply, but also near the 

scan edge where the signal’s variation is relatively weak.  Since the truth is 

unavailable for the actual case, the deviation from the remapped result to the raw data 

is computed (Fig. 12 (d-e)) to illustrate the degree of the spatial resolution enhancement. 

The comparison shows that the resolution enhancement achieved by the adaptive 

window is much higher than that can be obtained by the 3×3 window. Focusing on the 

coastline of Cuba, the difference between the raw data and the data remapped with the 

3×3 window (Fig. 12 (d)) gradually disappears as the scan angle increases, whereas this 

pattern is not observed in the image remapped by the adaptive window (Fig. 12 (e)).  



Fig. 13 presents the case of typhoon Surigae near Philippines at 17:00 UTC 19 April 

2021 caught by ATMS during its descending orbit. The figure shows that, comparing 

to the 3×3 window result, the image produced by the adaptive window unfolds more 

details of the typhoon structure and more distinct coastlines. Both Fig. 14 and Fig. 15 

display the clear sky image of the South America. While Fig. 14 focuses on the Amazon 

River Delta region located around the Equator, Fig. 15 shows the southern part of the 

continent stretching from 15°S to 60°S. It can be seen that the adaptive window gains 

much higher spatial resolution along the tributaries of the Amazon river than the 3×3 

window. Both figures suggest that the adaptive window has similar remapping accuracy 

along the scan line while the 3×3 window has lower accuracy around the scan edge. 

The above cases covering different weather conditions and regions lead to the same 

conclusions. The spatial resolution enhancement capability of the 3×3 window 

deteriorates as the scan angle increases. With the adaptive window, the degree of the 

resolution enhancement stays high across the entire scan line. The experiments indicate 

that the information provided by the fixed window is insufficient for the accurate 

remapping and this issue can be effectively alleviated by the adaptive window method. 

V. CONCLUSION 

The intrinsic antenna pattern match for the observations from multiple space-borne 

microwave sensors is the premise for their accurate applications in various data fusion 

techniques. The well-established Backus-Gilbert Inversion (BGI) algorithm has long 

been adopted for the Advanced Technology Microwave Sounder (ATMS) remapping. 



However, although the spatial resolution degradation by BGI is near-perfect, the 

resolution enhancement still needs to be improved. This study revealed that the root 

cause is the insufficiency of the information provided by the conventional fixed 

reconstruction window. To improve the spatial resolution enhancement accuracy, the 

adaptive window method is applied to increase the amount of sub-footprint scale 

information. In addition, a new noise tuning method is proposed to eliminate the FOV-

dependent features of the noise in the remapped images caused by the sensor’s cross-

track scanning manner.  

To evaluate the effectiveness of the new method, the BGI algorithm with the adaptive 

window and the conventional fixed 3×3 window are applied to remap ATMS channel 

1 data with 5.2° beam width to the AMSU-A like 3.3° beam width. The numerical 

results from simulated data sets and real satellite observations show that the adaptive 

window method can significantly improve the spatial resolution enhancement accuracy 

while maintaining the noise level at an acceptable level. Compared to the fixed window, 

the new method narrows the beam width of the antenna pattern by 10%. The bias 

stemming from the spatial resolution differences is reduced to 0 K and the overall RMS 

is declined by 30%. The issue of the deterioration of the resolution enhancement 

capability near the scan edge when using the fixed window has been largely ameliorated 

by the adaptive window method. With the FOV-dependent noise-tuning parameters 

specified through the trade-off curves, the noise level is suppressed steadily at 0.6 K 

over scan. However, the adaptive window has relatively low remapping accuracy at 

scan edge when dealing with uniform antenna temperature area. A possible solution to 



this issue is to combine the data from the adjacent satellite orbits into the reconstruction 

at scan edge. 

The improved BGI algorithm proposed in this paper can be easily applied to other 

spaceborne microwave sensors. It should be noted that the spatial resolution 

enhancement required in ATMS remapping from 5.2 ° to 3.3 ° beam width is mild. In 

this scenario, the noise, rather than the fit error, dominates the remapping uncertainties. 

The noise-tuning method proposed in this study can effectively make the noise, the 

major component in the remapping uncertainties, acceptable and consistent along the 

scan line. However, for higher spatial resolution enhancement when fit error becomes 

dominant in the remapping uncertainties, the noise-tuning method that determines the 

parameter solely from tradeoff curves may not be applicable. In that case, to ensure an 

acceptable and consistent noise level over scan line, the noise-tuning parameter needs 

to be selected for each FOV or each group of the neighboring FOVs through simulations.      

Another advantage of the adaptive window over the fixed window is its capability of 

dealing with the irregular sampled data, like the measurements from small satellite 

constellation and the observations combined from multiple passes of a single spacecraft 

system. Future work will focus on processing these measurements through the 

improved BGI algorithm, with the purpose of producing high quality microwave data 

with finer spatial resolution and lower noise level. The software package of the new 

algorithm developed in this paper is publicly available at 

https://github.com/JunUMD/BG_AdaptiveWindow_v1.git 

https://github.com/JunUMD/BG_AdaptiveWindow_v1.git
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TABLE I. ERROR STATISTICS FOR THE RAW AND REMAPPED 

OBSERVATIONS WITH THE 3×3 AND ADAPTIVE WINDOWS 

Fig. 1. Reconstruction windows at the scan edge (a) and nadir (b). The blue circle 

denotes the pixel of interest, i.e. the outline of the projection of the target antenna 

pattern with 3.9 times its -3 dB beam width. The red and black crosses respectively 

represent the source ATMS channel-1 5.2° FOV centers in the 3 × 3 window and the 

adaptive window. 

Fig. 2. Simulation results of ATMS channel-1 resolution enhancement from the source 

5.2° FOV to the target 3.3° FOV. Simulated source (a) and target (b) observations; 

remapped observations with the 3×3 window (c) and the adaptive window (d); the 

deviation from the remapping results of the 3×3 window (e) and the adaptive window 

(f) to the simulated truth (remapping minus truth). Units are K. 

Fig. 3. Tradeoff curves at the scan edge (a) and nadir (b). Solid and dashed lines are for 

the adaptive window and 3 × 3  window, respectively. The cross on each curve 

denotes the point where the noise amplification ratio is 2.5. 

Fig. 4. The noise level and the BGI coefficients when 𝛾𝛾 is selected by the new method 

(upper panel) and fixed to 0.12 ° (lower panel). (a) and (c) show the value of 𝛾𝛾 (black) 

and the corresponding noise level (red) at each scan position. (b) and (d) show the BGI 

coefficients for the FOV at edge (blue) and nadir (black). The source observation index 

is shifted to make the one with the highest weight at center. 

Fig. 5. The deviation from remapping results of the adaptive window with FOV-

dependent γ (a) and fixed γ (b) to the simulated truth. Unit is K. 



Fig. 6. Bias and STD error of the reconstruction from adaptive window with fixed γ 

(black line with grey shade) and FOV-dependent γ (red line with red shade). 

Fig. 7. Window size at nadir (black) and the RMS error of the remapping results (red) 

for various window types, including the fixed 3 × 3 window and the adaptive window 

with the threshold from 0 dB to -13 dB.  

Fig. 8. The deviation from the remapping results to the simulated truth for the adaptive 

windows with the gain threshold of 0, -1, -3, -5, -7 dB (a-e). Unit is K. 

Fig. 9. The source, synthetic, and target PSFs at nadir. The source ATMS channel-1 

PSF (a), the AMSU-A-like PSF reconstructed with the fixed 3×3 window (b) and the 

adaptive window (c), and the target AMSU-A PSF (d). (e–f) are the Fourier transforms 

of the PSFs (a–d). All response functions have been normalized to 1.0 to facilitate 

comparisons. 

Fig. 10. Half-power points of the PSFs at nadir and their circular curve fittings. The 

black and green markers are for the source and the target PSFs, while the blue and red 

markers are for the synthetic PSFs with the fixed 3×3 window and the adaptive window 

respectively.   

Fig. 11. Source data involved in the reconstruction of the target observation at the 95th 

FOV of 18th scan line. Colored points represent the antenna temperature of the data 

within the adaptive window and the black box circles the data used in the 3×3 window. 

Unit is K. 

Fig. 12. Application of the BGI with the 3×3 window and the adaptive window to real 

ATMS observations of hurricane Dorian. (a) Raw observations of ATMS channel 1, (b) 



3×3 window remapping result and (d) its difference from the raw data, (c) adaptive 

window remapping result and (e) its difference from the raw data. Units are K. 

Fig. 13. The same as Fig. 12 but for the case of typhoon Surigae at 17:00 UTC 19 April 

2021. 

Fig. 14. The same as Fig. 12 but for the image of Amazon River Delta region. 

Fig. 15. The same as Fig. 12 but for the image of Southern part of South America.  

 

 

 

  



TABLE I 

ERROR STATISTICS FOR THE RAW AND REMAPPED OBSERVATIONS 

WITH THE 3×3 AND ADAPTIVE WINDOWS 

 

Data Bias 

(K) 

STD 

(K) 

RMS 

(K) 

Raw 0.14 2.48 2.48 

Remapped by 3×3 window  0.13 1.49 1.50 

Remapped by adaptive window with fixed γ 0.05 0.93 0.93 

Remapped by adaptive window with FOV-

dependent γ 

0.00 0.65 0.65 

 

  



 

Fig. 1. Reconstruction windows at the scan edge (a) and nadir (b). The blue circle 

denotes the pixel of interest, i.e. the outline of the projection of the target antenna 

pattern with 3.9 times its -3 dB beam width. The red and black crosses respectively 

represent the source ATMS channel-1 5.2° FOV centers in the 3 × 3 window and the 

adaptive window. 

  



 

 

 

Fig. 2. Simulation results of ATMS channel-1 resolution enhancement from the source 

5.2° FOV to the target 3.3° FOV. Simulated source (a) and target (b) observations; 

remapped observations with the 3×3 window (c) and the adaptive window (d); the 

deviation from the remapping results of the 3×3 window (e) and the adaptive window 

(f) to the simulated truth (remapping minus truth). Units are K. 

  



 

Fig. 3. Tradeoff curves at the scan edge (a) and nadir (b). Solid and dashed lines are for 

the adaptive window and 3 × 3  window, respectively. The cross on each curve 

denotes the point where the noise amplification ratio is 2.5.  

  



 

Fig. 4. The noise level and the BGI coefficients when 𝛾𝛾 is selected by the new method 

(upper panel) and fixed to 0.12 ° (lower panel). (a) and (c) show the value of 𝛾𝛾 (black) 

and the corresponding noise level (red) at each scan position. (b) and (d) show the BGI 

coefficients for the FOV at edge (blue) and nadir (black). The source observation index 

is shifted to make the one with the highest weight at center. 

  



 

Fig. 5. The deviation from remapping results of the adaptive window with FOV-

dependent γ (a) and fixed γ (b) to the simulated truth. Unit is K. 

  



 

Fig. 6. Bias and STD error of the reconstruction from adaptive window with fixed γ 

(black line with grey shade) and FOV-dependent γ (red line with red shade). 

 

 

  



 

Fig. 7. Window size at nadir (black) and the RMS error of the remapping results (red) 

for various window types, including the fixed 3 × 3 window and the adaptive window 

with the threshold from 0 dB to -13 dB.  

  



 

Fig. 8. The deviation from the remapping results to the simulated truth for the adaptive 

windows with the gain threshold of 0, -1, -3, -5, -7 dB (a-e). Unit is K. 

  



 

Fig. 9. The source, synthetic, and target PSFs at nadir. The source ATMS channel-1 

PSF (a), the AMSU-A-like PSF reconstructed with the fixed 3×3 window (b) and the 

adaptive window (c), and the target AMSU-A PSF (d). (e–f) are the Fourier transforms 

of the PSFs (a–d). All response functions have been normalized to 1.0 to facilitate 

comparisons. 

  



 

Fig. 10. Half-power points of the PSFs at nadir and their circular curve fittings. The 

black and green markers are for the source and the target PSFs, while the blue and red 

markers are for the synthetic PSFs with the fixed 3×3 window and the adaptive window 

respectively.   

  



 

Fig. 11. Source data involved in the reconstruction of the target observation at the 95th 

FOV of 18th scan line. Colored points represent the antenna temperature of the data 

within the adaptive window and the black box circles the data used in the 3×3 window. 

Unit is K. 

 

  



 

 

Fig. 12. Application of the BGI with the 3×3 window and the adaptive window to real 

ATMS observations of hurricane Dorian. (a) Raw observations of ATMS channel 1, (b) 

3×3 window remapping result and (d) its difference from the raw data, (c) adaptive 

window remapping result and (e) its difference from the raw data. Units are K. 

  



 

Fig. 13. The same as Fig. 12 but for the case of typhoon Surigae at 17:00 UTC 19 April 

2021. 

  



 

 

Fig. 14. The same as Fig. 12 but for the image of Amazon River Delta region. 

  



 

 

 

Fig. 15. The same as Fig. 12 but for the image of Southern part of South America.  
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